CHAPTER 1: PARTICLE STATES IN A CENTRAL POTENTIAL

1. Schrédinger Equation for a Central Potential

Any of one component of angular momentum L=xXxp=—ihx xV commutes
with the Hamiltonian H. L? also commutes with H.

In polar coordinates,

L, =ih (sin ¢7£ + cot O cos qbi)

90 9
Ly =ih (— cos ¢% + cotﬁsinqﬁ%)
0
Lo = —ith— 1
3 Zh(% (1)
What does this have to do with the Schrdédinger equation?
0 , 0
2 _ #2292 Y 20
L? = —h {rv o 07,} (2)

or in other words:

10,0 L

2 _ -
Vi= r2 8r7‘ or  h%r? (3)

Then Schrdédinger equation takes the form:

BU) = 5o (PO ) 4 TR VN @)

As long as V(r) is not extremely singular at r=0, the wave

function can be expressed as a power series in the Cartesian

components.
P(x) = 'Y (9, ) (5)
then,
Vi) = w2 (252 ) 2 B V() wt) ©)

In the limit r—0, as long as the potential is less singular than
l/ﬁ, the second term on the right side vanishes as r— 0 more

rapidly than 4%, so ¢ satisfy the eigenvalue equation

L24(x) — R2(1+ 1)y (7)
Hence, the eigenvalue of H can only be R2(I+1).

Since L? acts only on angles, such
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where R(r) is a function of r satisfying
R(r)xrt for r—0 (9)
and Y(6,¢) is a function of @ and ¢ satisfying
LY =R +1)Y (10)

If we also require ¥ to be an eigenfunction of L3 with eigenvalue
denoted hm

then
LY = hmY (11)
Equation 1.3 shows that Y(f,¢) must then have a ¢-dependence
Y (6, ¢) = €™ x function of 6 (12)

The condition that Y(f,¢) must have the same value at ¢=0 and

¢ =271 requires then m be an integer.

2. Spherical Harmonics

The angular part of the wave function will therefore be labeled
with [ and m, as Y™(0,¢).

Use Eg.3 and act on NE”, and according to Eq.10,
v (r'ym) =0 (13)

Finally, recall that ﬂﬁm(&¢) is a homogeneous polynomial of order
Il in the Cartesian components of the coordinate vector x.
Equivalently, it can be written as a homogeneous polynomial of
order [ in

+ig

Ty = x1 £ ix9 = rsinfe and x3 =rcosf (14)

Thus Eg.1ll tells us that Y™ must contain numbers v, of factors of
zy such that

m=vy —v_ (15)

Since the total number of factors of z,, z. and z3 is [, the index
m 1s a positive or negative integer, with a maximum value [ and a

minimum value -—I.
Whether Y™ is uniquely determined by the values of [ and m ?
For a given I , m takes 2/+1 values. And we have

A

N=Y Y 1=+ (16)

v, =0v_=0
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Recall Eq.13,
Ny, — N, =2l+1 (17)
Thus, there is only one independent polynomial for each [ and m.

These functions, denoted Y™(6,¢), with —-l<m<+4l, are known as

spherical harmonics.

Y™ (6, 4) < B ()™ (18)

For 1 <2,

We also note the space-inversion (or "parity") property of the

wave function.

Under the transformation # — —%, the spherical harmonics change by
just a sign factor (-1)':

Y™ (n — 0,7+ ¢) = (—1)'Y;"(6, ¢) (20)

3. The Hydrogen Atom

Since we have Eqg.8, ¢(x)=R(r)Y(0,¢), and associate it with Eqg.10,
L’Y = B2I(1+1)Y

we can get Schrddinger equation;

2 d R2(I+1
ER(r) = — R4 (e R(r) - (1)
2ur? dr dr 2pur?

R(r) + V(r)R(r) (21)

The equation above can be made to look more like the Schrédinger

equation in one dimension by defining a new radial wave function

u(r) = rR(r) (22)
Then Eg.20 takes the form
R? d?u(r) (1 + 1)k
a @ VO | ) = Bu) (23)

Consider V(r) = —Ze?/r
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d?u(r) 2n%Zé2+_Kl+l)

o pre - u(r) = —k%u(r) (24)

where Kk is defined by

k2 K2

E = ,
2m,

k>0 (25)
We can write this in dimensionless form by introducing

p = Kr (26)

After dividing by k?, Eg.23 becomes

d*u ¢ 1(1+1)
where
¢ = 2m,. Ze? (28)
 kh?

We must look for a solution that decreases as p*' for p—0, and
like exp(—p) for p— oo, so let's replace uw with a new function F(p),
defined by

u = p'*! exp(—p)F(p) (29)

The radial wave equation (26) thus becomes

R 1\ dF —21—2
d__2<1_lL)‘jl—p+<%>F:o (30)

Let's try a power-series solution

F = Zasps, (31)
s=0
Then Eg.29 becomes,
Zas [s(s — Dp* 2 —2sp" 1 +2s(1+1)p* 2 + (€ — 21 — 2)p3*1] =0 (32
s=0

After redefining s as s+1,

ips_l [s(s + 1)ast1 — 2sas +2(s +1)(I + L)as1 + (£ — 21— 2)as] =0 (33)
s=0

Thus

(s +21+2)(s+1)ass1 = (€ +2s+ 20+ 2)a, (34)

Let us consider the asymptotic behavior of this power series for
large p.



For s—o0:
asi1/as — 2/s (35)
we have
a; ~ C 2°/(s + B)! (36)

Thus we expect that asymptotically

F(p) ~ Ci:; % — C(2p) Be* (37)

Aside from constants and powers of p, u=~exp(p), which is
inconsistent with Eq.28.

The only way to avoid this is to require that the power series

terminates.

£€=2n>1+1 seeright hand of Eq. 33 (38)

Although the wave functions depend on I and m, the energy only
depend on n. with ¢=2n, Eg.27 gives

2m, Ze? 1
n=——= — 39
" 3% na (39)
where a is Bohr radius
h2
a=———=52918 x 107 °Z'm (40)
me Ze?
Finally,
B - h2K2 _ h? - meZ%et - 13.6057Z%eV (41)
2m, 2me.a®n? 2h2n?2 n?

For each n we have ! values running from 0 to n—1, and for each I
we have 2l+1 values of m. The total number of states with energy
E, is

n—1

> @+1)=n (42)

=0

The rate at which a state represented by a wave function % decays
by single-photon emission into a state represented by a wave
function ¢ is proportion to |[¢"*x¢¥|*>. If we change the variable of
integration from x to —x, the wave functions v and ¥ change by
factors (~1) and (-1)", and so the whole integrand changes by a
factor

(_1)l+l'+1 (43)



So the signs (-1)' and (—1)' must be opposite. Thus 2p orbital can

transit to 1ls, but 2s can't transit to 1s by only emitting one

photon.

4. The two body problem

The two-body problem is equivalent to a one body problem, with

the electron mass replaced with a reduced mass:

mempy

o= Me + My

The Hamiltonian for one-electron atom is

P? P2
H — e + N
2me 2mN

+ V(xe - XN)

(44)

We introduce a relative coordinate x and a center-of-mass

coordinate X by

mMeXe + myXny
Me + My

X=X, — Xy, X=

and a relative momentum p and a total momentum P by

P. P
PEM< : ——N>, P=p, +py
me my

Then Hamiltonian may be written

2 2

P P
H=7—4+————+V(x
2 2(me +my) (x)

where

p = —ihVy, P = —ihVx

(46)

(48)

So the momenta and the coordinates satisfy the commutation

relations

Such a wave function will have the form

Y(x,X) = e X (x)

and ¥(x) is a wave function for an internal energy &,

the one-particle Schrddinger equation

RVI(x)

o V(x)U(x) = E0(x)

(50)

(51)

satisfying

(52)

The total energy is Jjust the internal energy & of the atom, plus

the kinetic energy of its overall motion:
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For hydrogen and deuteron,

fipe = 0.99945m,,  pge = 0.99973m,. (54)

This tiny difference is enough to produce a detectable split in
the frequencies of light emitted from a mixture of ordinary
hydrogen and deuterium.

5. The Harmonic Oscillator

Let's consider a particle of mass M in a potential

V(r) = %Maﬂrz (55)

There are four reason it is worth considering

1. Historical Reason: This is the problem studied by Heisenberg

introducing Matrix Mechanics

2. This theory provides a nice illustration of how we can find
energy levels and radiative transition amplitudes by
algebraic methods, without having to solve second-order

differential equations.

The harmonic potential is used in models of atomic nuclei.
The methods described here is useful for dealing with the
energy levels of electrons in magnetic fields and for
calculating the properties of photons.

The Schrodinger equation is here

K2 1
E — 2 = 2 2
) —2MV ¢+2er1/1 (56)

we can write this equation in another form

S (LB v Mely

— =F 57
B i ¥ (57)

This has separable solutions, of the form
(%) = Yn, (€1)Pn, (22)n, (23) (58)

where ¢,(z) is a solution of the one-dimensional Schrédinger
equation
B h? 82¢m(x)<+ Mw?z?, ()
2M  Ox? 2

= Epn () (59)
The energy is the sum.

E=F; + FEy + Ej (60)
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To solve this problem, we introduce so-called lowering and

raising operators

1
a; = ————| —ih — tMwz; 61
2 Mhw ( Oz; ) (61
1
e —— <—ih + iMwa:i> (62)
2 Mhw Ox;

These operators obey the commutation relations
[a- aT} = d;; (63)
19 @ 1
and
;] = |al,al| =0 64
a;,a;] = a;,a;| = (64)

Also, the one-dimensional Hamiltonian here is

K2 Muw?x? 1
H=-—V4 —"'= Ta; + =
2MV1 + 5 hw [ala + 2] (65)
Now
[Hi,a;] = —hwa;, [Hi,al] = +hwa! (66)

Hence if % represents a state with energy FE, then a9 represents a
state with energy E-hAw, and @dzrepresents a state with energy
E+ hw.

There must be a wave function y(z;) for which a9 =0; 1t is
Yo (zi) x exp(—Muwz? /2R) (67)
And
Un, (x;) a;mi Yo(z;) < Hy, (z;) exp(—Mwz? /2R) (68)

where H,(z) is a polynomial of order n in x. These polynomials

satisfy the parity condition
Hy(—z) = (=1)"Hy(z) (69)

The general wave function representing a state of definite energy
is therefore

Yryngns (X) o ai"l a;m a§"3 o« Hy, (21)Hy, (22)Hy, (23) exp(—Mwr? /2R)  (70)

and the state has energy

1
En1n2n3 = hw [Z (agai + 5)

= hw [N + %] (71)

i

where N =mn; +ns +nz.



The degeneracy N,
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